Sharp lower bounds for regulators of small-degree number fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some lower bounds for the $L$-intersection number of graphs

‎For a set of non-negative integers~$L$‎, ‎the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$‎. ‎The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...

متن کامل

Lower Degree Bounds for

We prove two statements. The rst one is a conjecture of Ian Hughes which states that if f1; : : : ; fn are primary invariants of a nite linear group G, then the least common multiple of the degrees of the fi is a multiple of the exponent of G. The second statement is about vector invariants: If G is a permutation group and K a eld of positive characteristic p such that p divides jGj, then the i...

متن کامل

Sharp lower bounds on the fractional matching number

A fractional matching of a graph G is a function f from E(G) to the interval [0, 1] such that ∑ e∈Γ(v) f(e) ≤ 1 for each v ∈ V (G), where Γ(v) is the set of edges incident to v. The fractional matching number of G, written α′∗(G), is the maximum of

متن کامل

Lower Bounds for the Number of Small Convex k-Holes

Let S be a set of n points in the plane in general position, that is, no three points of S are on a line. We consider an Erdős-type question on the least number hk(n) of convex k-holes in S, and give improved lower bounds on hk(n), for 3 ≤ k ≤ 5. Specifically, we show that h3(n) ≥ n − 32n 7 + 22 7 , h4(n) ≥ n 2 2 − 9n 4 − o(n), and h5(n) ≥ 3n 4 − o(n).

متن کامل

some lower bounds for the $l$-intersection number of graphs

‎for a set of non-negative integers~$l$‎, ‎the $l$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $a_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|a_u cap a_v|in l$‎. ‎the bipartite $l$-intersection number is defined similarly when the conditions are considered only for the ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2016

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2016.03.002